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Abstract

Reinforcement learning (RL) has made remarkable progress in neural machine translation (N-
MT). However, it exists the problems with uneven sampling distribution, sparse rewards and
high variance in training phase. Therefore, we propose a multi-reward reinforcement learning
training strategy to decouple action selection and value estimation. Meanwhile, our method
combines with language model rewards to jointly optimize model parameters. In addition, we
add Gumbel noise in sampling to obtain more effective semantic information. To verify the ro-
bustness of our method, we not only conducted experiments on large corpora, but also performed
on low-resource languages. Experimental results show that our work is superior to the baselines
in WMT14 English-German, LDC2014 Chinese-English and CWMT2018 Mongolian-Chinese
tasks, which fully certificates the effectiveness of our method.

1 Introduction

Neural machine translation (NMT) (Bahdanau et al., 2015; Wu et al., 2018a; Yang et al., 2018) has
drawn universal attention without the demand of numerous manual work. In training phase, generic
NMT models employ maximum likelihood estimation (MLE) (Harris and Mandelbaum, 1985), which
is the token-level objective function. However, it is inconsistent with sequence-level evaluation metrics
such as BLEU (Papineni et al., 2002). Reinforcement learning (RL) are leveraged for sequence gen-
eration tasks including NMT to optimize sequence-level objectives, such as Actor-Critic (Bahdanau et
al., 2017) and Minimum Risk Training (MRT) (Shen et al., 2016). In machine translation community,
Wu el at. (Wu et al., 2018a) provide the first comprehensive study of different aspects of RL training,
they set a single reward to mitigate the inconsistency, and combine MLE with RL to stabilize the train-
ing process. Nevertheless, NMT based on reinforcement learning (RL) is unable to guarantee that the
machine-translated sentences are as natural, sufficient and accurate as reference. To obtain smoother
translation results, generative adversarial network (GAN) and deep reinforcement learning (DRL) (Wu
et al., 2018b) are employed to NMT. And (Yang et al., 2018) utilizes sentence-level BLEU Q as a rein-
forcement target based on the work of (Wu et al., 2018b) to enhance the capability of the generator.

Although this nova machine translation learning paradigm based on GAN and DRL reveals excellent
manifestation, there are still some limitations: (1) when calculating rewards, the overestimation of Q
value will give rise to a suboptimal strategy update. (2) during training phase, it exists the problems
with uneven sampling distribution, sparse rewards and high variance. What’s more, the generator uses
Monte Carlo to simulate the entire sentence, but it usually requires more calculation steps, resulting in
too many parameters. (3) traditional NMT usually utilizes deterministic algorithms such as Beam Search
or Greedy Decoding when predicting the next token. These methods lacks randomness, which may cause
the potential best solution to be discarded.

In this paper, we propose some measures to address the above problems. Foremost, we adopt a novel
multi-reward reinforcement learning method. That is, we weighted sum the actual reward of the dis-
criminator, the language model reward and the sentence BLEU to obtain the total reward. Among them,
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we adopt reward shaping to alleviate the sparse reward when calculating sentence rewards. Nextly, our
method employ Temporal-Difference Learning (TD) (Sutton, 1988) to simulate the entire sentence. It
effectively speeds up training and relieves the problem of error accumulation. Finally, we adopt Gumbel-
Top-K Stochastic Beam Search (Kool et al., 2019) to predict the next token. The method trains model
more efficiently by adding the noise obeying Gumbel distribution to control random sampled noise. Ex-
periments on the datasets of the English-German, Chinese-English and Mongolian-Chinese translation
tasks reveal our approach outperforms the best published results. In summary, we mainly made the
following contributions:

• It is the first time that duel reward has been applied to neural machine translation. This method is
applicable to arbitrary end-to-end NMT system.

• Our generator to optimize reward by using Gumbel-Top-K Stochastic Beam Search to sample dif-
ferent samples and Temporal-Difference Learning to simulate sentences.

• In English-German and Chinese-English translation tasks, we tested two different NMT models:
RNNSearch and Transformer. Experimental results reveal that our proposed method performs well.

2 Background & Related Work

Common NMT models are based on an encoder decoder architecture. The encoder reads and encodes
the source language sequence X = (x1, ..., xn) into the context vector representation, and the decoder
generates the corresponding target language sequence Ŷ = (ŷ1, ..., ŷm). GivenH training sentence pairs{
xi, yi

}H
i=1

, at each timestep t, NMT is trained by maximum likelihood estimation(MLE) and generates
the target words ŷt by maximum the probability of translation conditioned on the source sentence X .
The training goal is to maximize:

LMLE =

H∑
i=1

logp(ŷi|xi) =
H∑
i=1

m∑
t=1

logp(ŷit|ŷi1...ŷit−1, xi) (1)

where m is the length of sentence ŷi.
According (Williams, 1992), reinforcement learning enables NMT to optimize evaluation during train-

ing and usually estimates the overall expectation by sampling ŷ with policy p (ŷ|x). The training objec-
tive of RL is to maximize the expected reward:

LRL =
H∑
i=1

R
(
ŷi, yi

)
, ŷi ∼ p

(
ŷ|xi

)
,∀i ∈ [H]. (2)

where R (ŷ, y) is the final reward calculated by BLEU after generating the complete sentence ŷ. To
increase stationarity, we combine the two simple linearly:

LCOM = µ× LMLE + (1− µ)× LRL (3)

where µ is the hyperparameter to control the balance between MLE and RL. LCOM is the strategy to
stabilize RL training progress.

(Yang et al., 2018) proposed the BLEU reinforced conditional sequence generative adversarial net
(BR-CSGAN) on the basis of reinforcement learning. The specific process is that generator G generates
the target sentence based on the source sentence, and discriminator D detects whether the given sen-
tence is groundtruth. During training status, G attempts to deceive discriminator D into believing that
the generated sentence is groundtruth. The D strives to improve its anti-spoofing ability to distinguish
machine-translated sentences from groundtruth. When G and D reach the Nash balance, the training
results achieve the optimal state, and utilize BLEU to guide the learning of the generator.
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Figure 1: The Illustration of the proposed multi-reward generative adversarial net(referred to as MR-
GAN). The discriminator D is trained over the reference sentence pairs translated by the human and the
generated sentence pairs (sampled with Gumbel noise) by G. Extract feature information via convolution
(CL) and pooling (PL) operations, and adopt global features to jointly calculate rewards. Lastly, the
generator G is trained by policy gradient where the final reward R is provided by D, V and A.

3 Approach

In this section, we describe the multi-reward of reinforcement learning evaluation paradigm based on
GAN model. The overall architecture is shown in Figure 1. We introduce the generator G, discriminator
D, sampling with Gumbel-Top-K Stochastic Beam Search, calculating final reward and training the entire
model in detail.

3.1 GAN-based NMT

The Generative Adversarial Net comprises of two adversarial sub models, a generator and a discrimina-
tor. The generator G is similar to the NMT model. Based on the source language sentence X , G aims
to generate a target sentence Ŷ which is indistinguishable from the reference Y . We take two different
architectures for the generator, the traditional RNNSearch (Bahdanau et al., 2015) and the state-of-the-art
Transformer (Vaswani et al., 2017).

We utilize CNN (Yin et al., 2016) that performs better in classification tasks to construct the discrim-
inator D. It aims to identify machine-generated sentences from a set of sentences containing machine
translation Ŷ and reference Y . To be specific, the generator’s output Ŷ or reference Y is spliced with
the source language sentence X to form a two-dimensional matrix, and the similarity between Y and
X is measured by a convolution network. The optimization goal of the discriminator is minimize the
coss-entropy loss of the binary classification:

L = − [a ∗ log(p) + (1− a) ∗ log(1− p)] , p = δ
(
V
[
rX ; rŶ

])
(4)

where p is the probability that the target-language sentence is being real. rX is the sentence representation
of source language, which consists of extracting different features through different numbers of kernels
with different window sizes. Similarly, rŶ is the target language sentence representation extracted from
the target matrix Ŷ1:T = ŷ1; ŷ2; ...; ŷT . V indicates the matrix which is used to merge rX and rŶ into a
low dimensional vector space. δ denote as the logistic function and a is a variable, which is correctly 1,
otherwise 0.
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3.2 Sampling

Figure 2: Gumbel-Top-K Stochastic Beam Search. ∼ g
indicate add Gumbel noise when sampling.

General NMT adopt Beam Search to gen-
erate the next token to reduce search s-
pace and speed up decoding. However,
in many training methods such as RL or
MRT, it is necessary to randomly collect
multiple different samples from the model
to calculate the sentence-level loss when
decoding, but traditional methods can on-
ly produce similar results and loss of ran-
domness. For this purpose, this work
adopts an efficient and stable sampling
method based on Gumbel-Top-K Stochas-
tic Beam Search (Kool et al., 2019) to pre-
dict next token.

This algorithm uses Top-Down sampling (Maddison et al., 2014) and performs Beam Search on the log
probability of random perturbations. The structure is shown in Figure 2 with k = 2. We first perturb the
log probability of the root node, then perturb and correct the log probability of all candidate sequences,
and only keep the two nodes with the highest log perturbation probability to expand. Finally we get two
samples with more randomness as well as each sample is subject to the original distribution.

Specifically, for a category distribution I with N categories I ∼ Categorical
(

expφi∑
j∈N expφi

)
, where

φi is the log-probability of the i-th category and i ∈ N . If we take the logarithm of each category of I
and add the noise g that obeys the Gumbel distribution, then take the Top-K from this slightly disturbed
sentence with the Top-K probability (ie.largestK categories after logarithmic calculation). The equations
are as follows:

G ∼ Gumbel (φ) = φ− log (−logU) = Gumbel (0) + φ (5)

I1,...,k = argtopKi∈NGumbel (φi) (6)

where U ∼ Uniform (0, 1) and Gi ∼ Gumbel (0). It can be guaranteed that these K categories
are subject to I and are different simultaneously, meanwhile the noise is controlled by the Gumbel
distribution. With this method, we can train the model more efficiently and alleviate the problems of
overtranslation and undertranslation in NMT.

3.3 Multi-Reward of Reinforcement Learning
As shown in Figure 1. Distinct with (Yang et al., 2018), which directly apply smoothed sentence-level
BLEU as the specific objective Q for the generator. We aim to alleviate the overestimation of the reward,
meanwhile, consider the fluency of machine translation and loyalty to the real translation. Therefore,
our method is inspired by (Wang et al., 2016), given the generated sentence Ŷ1:t and the reference Y ,
the objective Q calculates a reward Q(Ŷ1:t, Y ), which measures the fluency and loyalty of the generated
sentence Ŷ1:t, the equation is computed as:

Q(Ŷ1:t, Y ) = λV
(
Ŷ1:t

)
+ (1− λ)A

(
Ŷ1:t, Y

)
(7)

where we set the independently generated language model reward as the value function V
(
Ŷ1:t

)
, and

the sentence reward as the advantage function A
(
Ŷ1:t, Y

)
. λ is a hyper-parameter.

Value function For the sake of receiving smoother translation, we utilize the language model scores to
participate in the calculation of rewards in reinforcement learning so that the NMT can consider the con-
textual and positional information of the corpus when translating. V

(
Ŷ1:t

)
represents the fluency score

of sequence ŷ1:t including the current word, which guide the NMT to translate a sufficiently accurate and
smooth result.
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Figure 3: Good-Turing smoothing algorithm. “....” represen-
t threshold, decrease the frequency of words which number of
occurrences is lower than the threshold, and give the sum of the
resulting frequencies to the words that do not appear.

Typical language models have
problems such as zero probability
or statistical inadequacies. Good
and Turing (Gale and Sampson,
1995) proposed a new probabilis-
tic formula to ease the "unsmooth-
ness" problem. As shown in Figure
3. They solved the zero-probability
problem by down-regulating the
frequency of words below the
threshold and giving the out-of-
vocabulary (OOV) a small non-
zero value, where the sum of the
down-regulated frequencies equal-
s the probability of the OOV. The
equation for 3-gram is as follow:

PGT (ωi|ωi−2, ωi−1) =


f(ωi|ωi−2, ωi−1), c(ωi−2, ωi−1, ωi) ≥ U

fgt(ωi|ωi−2, ωi−1), 0 < c(ωi−2, ωi−1, ωi) < U
Q(ωi−2, ωi−1) · P (ωi|ωi−1), otherwise

(8)

where we set U = 9, which is a threshold, and the function fgt(.) represents the relative frequency after

Good-Turing estimation. Therefore, the probability is normalized to get V
(
Ŷ1:t

)
, the equation is as

follow:

V
(
Ŷ1:t

)
=

S∑
s=1

csP
s
GT (9)

where cs represents the number of words that occur s times, and P sGT represents the probability of s
occurrences obtained from Good-Turing smooth algorithm.
Advantage function From Equation(2), the reward R (ŷ, y) is only obtained after generate a complete
sentence ŷ, it indicate only one reward is available for all actions(sample ŷ1...ŷT ). Consequently, RL
training is inefficient due to the sparsity of rewards, and the model updates each token in the training
sentence with the same reward without distinction. Following (Wu et al., 2018a), we employ reward
shaping to overcome the shortcoming. The current reward with reward shaping is defined as:

rt (ŷt, y) = R (ŷ1...t, y)−R (ŷ1...t−1, y) (10)

where R (ŷ1...t, y) is defined as the BLEU score of ŷ1...t respect to y. Reinforce algorithm has high
variance because it use a single sample ŷ to estimate the expectation. To improve the stability of the
algorithm, we add an estimate of the average reward at each step t, and then subtract it from future
cumulative reward. The cumulative reward are obtained from (11):

R (ŷ, y) =

m∑
i=1

rt (ŷ, y) , R (ŷ, y)− r̂t (11)

Combined with reward shaping, at each step t the Advantage function is computed as:

A
(
Ŷ1:t, Y

)
=

m∑
T=t

rT (ŷT , y)− r̂t (12)

Final Reward According to the objective of the generator model (policy) Gθ∗(ŷt|Ŷ1:t−1) (Yu et al.,
2017), to estimate RGθ∗D,V,A ,which is the action-value function of a target sentence. Following Equation
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(6), we consider the actual estimated probability of the discriminator D, the language model scores V
and the sentence reward A as the final reward that update and optimize the generator G:

R
Gθ∗
D,V,A

(
Ŷ1:T−1, X, ŷT , Y

)
= α

(
D
(
X, Ŷ1:T

)
− b

(
X, Ŷ1:T

))
+ βV

(
Ŷ1:t

)
+ γA

(
Ŷ1:t, Y

)
(13)

where b
(
X, Ŷ

)
represents the baseline value for reducing the variance estimation of rewards. We set

b
(
X, Ŷ

)
= 0.5 based on experience. Ŷ1:T represents the generated target sentence and Y indicates the

reference. α,β,γ are hyper-parameters.
However, D only provides a reward value for a entire generated target sequence. If Ŷ1:T is not the

completed target sequence, the value of D
(
X, Ŷ1:T

)
is meaningless. Therefore, we cannot obtain the

action-value of the intermediate state directly. Due to the large variance and parameters of Monte Carlo
search, our work utilize Temporal-Difference (TD)0 to sample the last T − t tokens, it does not stop until
the end of the sentence is sampled or the sampled sentence attains the maximum length. We implement
the H TD emulation process as:

(Ŷ 1
1:T1 , ..., Ŷ

H
1:TH

) = TDGθ∗
((
Ŷ1:t, X

)
, H
)

(14)

where
(
Ŷ1:t, X

)
= (ŷ1...ŷt, X) is the current state, and Ŷ H

t+1:TH
is sampling based onGθ∗ . The discrim-

inator rewards the sampled sentences separately and the discriminator output is calculated as the average
of the H rewards. Therefore, for a target sentence of length T , we calculate the reward for ŷt as:

R
Gθ∗
D,V,A

(
Ŷ1:t−1, X, ŷT , Y

)
=


1
H

∑H
j=1 α

(
D
(
X, Ŷ h1:Th

)
− b

(
X, Ŷ h1:Th

))
+ βV

(
Ŷ1:Th

)
+ γA

(
Ŷ1:Th , Y

)
t < T

αD((X, Ŷ1:t)− b(X, Ŷ1:t)) + βV
(
Ŷ1:t

)
+ γA

(
Ŷ1:t, Y

)
t = T

(15)

3.4 Training

The training goal is to train G from the initial state to achieve maximum expectations end rewards. The
objective equation is as follows:

J (θ∗) =
∑
Ŷ1:T

Gθ∗
(
Ŷ1:T |X

)
·RGθ∗D,V,A

(
Ŷ1:T−1, X, ŷT , Y

)
(16)

where R is Equation (16). Using sentence overall rewards to dynamically update the discriminator and
then the generator.

min− EX,Ŷ ∈Pdata
[
logD

(
X, Ŷ

)]
− EX,Ŷ ∈G

[
log
(
1−D

(
X, Ŷ

))]
(17)

After completing the above operations, we adopt gradient descent to retrain the generator:

5J (θ∗) =
1

T

T∑
t=1

Eŷt∈Gθ∗

[
R
Gθ∗
D,V,A

(
Ŷ1:t−1, X, ŷT , Y

)
· 5θ∗ logp

(
ŷt|Ŷ1:t−1, X

)]
(18)

4 Experiment and Analysis

We evaluate Chinese-English (Zh-En), English-German (En-De) and Mongolian-Chinese(Mo-Zh) tasks
to verify the effectiveness of our MR-GAN.

0Monte Carlo search is updated after sampled the complete sentence ŷ. It causes too many parameters and slower update
speed when sentence length is longer. Temporal-Difference (TD) algorithm is an iterative way of calculating value function,
which is updated once per sampling, accelerates the convergence speed and reduces variance.
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Model Zh-En En-De
MT14 MT15 MT16 AVE Newstest2014

Representative end-to-end NMT systems
RNNSearch (Bahdanau et al., 2015) 33.76 34.08 33.98 33.94 21.20
RNNSearch+BR-CSGAN (Yang et al., 2018) 35.47 35.71 36.14 35.77 22.89
Transformer (Vaswani et al., 2017) 41.82 41.67 41.92 41.80 27.30
Transformer+RL (Wu et al., 2018a) 41.96 42.13 41.97 42.02 27.25
Transformer+BR-CSGAN (Yang et al., 2018) 42.46 42.54 42.83 42.61 27.92

Our work
RNNSearch+MR-GAN 36.93 37.04 36.89 36.95 24.61
Transformer+MR-GAN 43.23 43.66 43.98 43.62 28.69

Table 1: BLEU scores of different NMT systems on Chinese-English and English-German.

4.1 Datasets and preprocessing

For En-De translation, we conduct our experiments on WMT14 En-De dataset, which contains 4.5
million bilingual pairs. Sentences are encoded using byte-pair encoding(BPE) (Sennrich et al., 2016).
Newstest2012/2013 are chosen for development set, Newstest2014 as the test set. For the Zh-En trans-
lation, LDC2014 corpus as training set with a total of 1.6 million bilingual pairs. Both the source and
target sentences are encoded with BPE. MT2013 is used as a development set and MT2014/2015/2016
as a test set. For Mo-Zh translation, the dataset adopts 261643 sentence pair Mongolian-Chinese bilin-
gual aligned corpus provided by CWMT2018, we utilize 220000 sentence pairs as training set, 20822 as
validation set, and the rest as test set. We perform word segmentation processing on the Chinese. On the
Mongolian end, due to its own natural separator, so we encode it with BPE.

4.2 Setting

For Transformer-Big, following (Vaswani et al., 2017), we set dropout = 0.1 and set the dimension
of the word embedding as 1024. We employ the Gumbel-Top-K Stochastic Beam Search to sample the
target token with beam size K = 4. A single model obtained by averaging the last 20 checkpoints and
we use adaptive methods to adjust the learning rate. For RNNSearch (Bahdanau et al., 2015), it is an
RNN-based encoder decoder framework with attention mechanism. We set the hidden layer nodes and
word embedding dimensions of the encoder and decoder to 512 and dropout = 0. The learning rate and
checkpoint settings are consistent with Transformer-Big.

For D, CNN consists of one input layer, three convolution + pool layer pairs, one MLP layer and
softmax layer. When the model is down-sampling, we use a 3 × 3 convolution window to perform
convolution calculations on the internal corpus, and the output size is 2× 2 pooling window. In addition,
we set the feature map and MLP hidden layer size as 20. The word embedding dimension and the number
of nodes are consistent with G.

Considering the computational complexity of model and the hardware environment of experiment,
we adopt ELMO1 (Peters et al., 2018) to construct and train the language model, which fully consider
contextual information in semantic learning. Furthermore, we adopt BLEU (Papineni et al., 2002) to
evaluate these tasks. All models are implemented in T2T tool and trained on two Titan XP GPUs. We
stop training when the model does not improve on the tenth evaluation of the development set.

4.3 The pre-training of model

When the generator and discriminator achieve the synchronization and coordination effect, the perfor-
mance of the model will be optimal. Therefore, we need to pre-train the model. The first step is pre-train

1http://allennlp.org/elmo/
ELMO, which fully consider contextual information has shown certain potential in semantic learning. It has strong modeling
capabilities, meanwhile, the parameters and complexity are relatively small, which is convenient for model construction and
training.
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Figure 4: (a):Training line charts with different hyper-parameters weights. (b):BLEU scores on test set
of LDC2014 Zh→En over different length of source sentences.

the generator G on bilingual training set until the best translation performance is achieved and we employ
the traditional maximum likelihood estimation during the process. Then, generate the sentences(machine
translations) by using the generator to decode the training data. The next step is pre-trian the discrimina-
tor on the combination of true bilingual data and machine transaltion data until the classification accuracy
achieves at ξ. Finally, according to the study of Yang et al. (Yang et al., 2018), the method of jointly
training the generator and discriminator and using the policy gradient to train the generator will lead to
unstableness. Therefore, following (Yang et al., 2018), we adopt the teacher forcing approach to solve
this problem. The parameter setting is exactly similar to (Yang et al., 2018), but the difference is that we
employ the Temporal-Difference instead of Monte Carlo.

4.4 Main results and Analysis

For RNNSearch, it is optimized with the mini-batch of 64 examples. For Transformer, each training
batch contains a set of sentence pairs contains approximately 25000 source tokens and 25000 target
tokens. Table 1 shows the comparison between existing NMT system and our work. It can be seen
that on Transformer, our approach outperforms the beat performance model and achieves improvement
up to +1.01 BLEU points averagely on Chinese-English test sets an +0.77 BLEU points on English-
German test set. It is profit from the novel method we have adopted to calculate rewards. Compared
with traditional reinforcement learning, the scope of reward calculation is wider and making translation
results more accurate and fluent. Furthermore, our method adds Gumbel noise when sampling, which
makes the sampling more random and alleviates the problem of overtranslation and undertranslation.
Experiments on the RNNSearch model shows the same trends, our approach still achieves 36.95 and
24.61 BLEU points on Chinese-English and English-German translations respectively.

4.5 Effect of Hyper-parameters and sentence length

We conduct a set of typical experiments using Transformer on the Chinese-English task to verify the
influence of hyper-parameters (Equation 15) on experimental results. As shown in Figure 4(a), the worst
result is obtained when α = 0. The effect of the model continues to improve as the value of α increases.
In the case of α = 0.7, β = 0.1. and γ = 0.2, it achieves the best performance in several groups of
experiments, and when α = 0.7, β = 0. and γ = 0.3, the effect is not satisfactory. It indicates that the
integration of language model rewards to evaluate the fluency of translation can effectively improve the
quality of the model. When α = 1.0, the effect is very poor but better than α = 0, which explains that
the multiple rewards proposed in this paper are effectively.

To verify the performance of this method on long sentences, following (Bahdanau et al., 2015), we
divided the development set data and test set data of the Chinese-English task according to the sentence
length. Figure 4(b) shows the BLEU scores for different sentence lengths. No matter on RNNSearch
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Figure 5: (a): Ablation study on Zh→En and En→De tasks. “◦" means utilize this module and “×" mean-
s not utilize. “G-N" indicate sample with Gumbel noise and Line 1 represent the result of BR-CSGAN.
(b): BLEU scores on test set of CWMT2018 MO→ZH over different length of source sentences.

or Transformer, compared with baseline and the best performing BR-CSGANS (Yang et al., 2018), our
work have outstanding behaviors continuously. It is due to our method not only calculates the single-step
reward, but also adds a smoothing restriction, which makes our method perform better on both long and
short sentences.

4.6 Ablation Study
Figure 5(a) shows the results of ablation study. Line 1 represent the result of BR-CSGAN and line 2
represent that reward shaping is used to calculate BLEU on the basis of BR-CSGAN. It is clear that
language model reward plays a critical role since removing it impairs translation performance (line 3).
As shown in line 4, sampling with Gumbel noise is also an essential part of our approach. The sentence
reward with each token is also shown to be benefit for improving performance (line 2) but seem to have
relatively smaller contributions than the above two parts.

4.7 Result of Mongolian-Chinese
To verify the robustness of the proposed method, we conducted a low-resource language Mongolian-
Chinese experiment on Transformer. The experimental results are shown in Figure 5(b). Compared
with the traditional Transformer, our approach improves 2.26 BLEU scores, meanwhile, it also increases
1.09 on the current best performance BR-CSGAN. It is fully proved that our method is also helpful for
low-resource translation tasks.

5 Conclusion

In this paper, we propose a novel multi-reward reinforcement learning training paradigm to guide the
optimization of model parameters, which makes the reward calculation more extensive. In addition, we
employ Gumbel method instead of traditional beam search to selectively sample more random datas in
the target space, and combining TD to calculate real-time reward. We validate the effectiveness of our
method on the RNNSearch and the Transformer. A large number of experiments clearly show that our
approach achieves significant improvements.
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