
Refining Data for Text Generation

Qianying Liu12, Tianyi Li1, Wenyu Guan1 and Sujian Li1
1 Key Laboratory of Computational Linguistics, MOE, Peking University

2 Graduate School of Informatics, Kyoto University
ying@nlp.ist.i.kyoto-u.ac.jp; litianyi01@pku.edu.cn ;

guanwy@pku.edu.cn; lisujian@pku.edu.cn

Abstract

Recent work on data-to-text generation has made progress under the neural encoder-decoder
architectures. However, the data input size is often enormous, while not all data records are
important for text generation and inappropriate input may bring noise into the final output. To
solve this problem, we propose a two-step approach which first selects and orders the important
data records and then generates text from the noise-reduced data. Here we propose a learning
to rank model to rank the importance of each record which is supervised by a relation extractor.
With the noise-reduced data as input, we implement a text generator which sequentially models
the input data records and emits a summary. Experiments on the ROTOWIRE dataset verifies the
effectiveness of our proposed method in both performance and efficiency.

1 Introduction

Recently the task of generating text based on structured data has attracted a lot of interest from the
natural language processing community. In its early stage, text generation (TG) is mainly accomplished
with manually compiled rules or templates, which are inflexible and mainly based on expert knowledge
(Kukich, 1983; Holmes-Higgin, 1994; Reiter and Dale, 1997). With the development of neural network
techniques, especially sequence-to-sequence (seq2seq) models, generating short descriptive texts from
structured data has achieved great successes, including generating wikipedia-style biographies (Lebret et
al., 2016; Sha et al., 2017) and restaurant introductions (Novikova et al., 2017).

However, the task of generating long text, such as generating sports news from data, still fails to
achieve satisfactory results. The existing models often forge fake context, lose sight of key facts and
display inter-sentence incoherence (Wiseman et al., 2017). For the sports news generation task, one
challenging problem is that the input records are both large and noisy. Specifically, the inputted box
scores, which contains hundreds of data records, belong to 40 different categories, such as fouls, three-
pointer, starting position and so on. Meanwhile, not all of the inputted records are reflected in the
sports news, and there exists a serious non-parallelism between data records and texts. According to our
statistics for 3000 parallel sports news and its data records which is shown in Table 1 and Figure 1, an
average of only 19.3 data records out of 670.6 are mentioned in the summaries on average, namely only
less than 5% of the data records are reflected in the human written news and rest 95% of them may bring
noise into the model. Such large and noisy input has also caused the parameter amount of the embedding
and encoder layer to be enormous, which leads to massive memory usage and limits the computation
speed. In such situation, it is essential to refine data records and choose those important information
before generating the final text.

In addition, sport news is far more complex than short descriptive text in that they need to consider
overall coherence (Bosselut et al., 2018). For example, it would be weird if there is an abrupt topic
change between neighboring sentences. If we just pour all the data records with no order into a model,
it would be difficult for the summarization model to learn content planning by itself. Thus, it is a good
practice to order the data records before text generation.

As stated above, in this paper, we propose to refine data records for the data-to-text generation task
by training a model to select an appropriate subset of data records, which carries the key facts of the

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Object Number
Average Data Records Mentioned 19.30
Average Data Records in Box Data 670.65
Average Summary Length 348.93
Types of Data Records 40

Table 1: Statistics of data records in 3000 sports news.

0

500

1000

1500

2000

2500

<10 10~19 20~29 30~39 >-40

Mentioned Data Records In One Summary

Figure 1: Statistics of data records mentioned in 3000 sports news. The horizontal axis stands for
summary numbers and the vertical axis stands for data record numbers.

game, and further to plan an appropriate order for the selected records. This is also similar to the action
of human writers who usually plan the important information to include before they write their articles.

Next, one key problem is to label the important records which would be time consuming and expensive.
To solve this problem, inspired by Wiseman et al. (2017) which used an information extraction (IE)
system for evaluation and Mintz et al. (2009) which used distance learning for relation extraction, we
build an IE system based on distant supervision. The IE system extracts relations from gold text, matches
them to the corresponding data records and its results can then be used to supervise the process of content
selection and planning. Then, we design a ranking unit to learn which data records are selected and in
what order they appear. Here we choose to use the learning-to-rank (L2R) method instead of a classifier,
because there exists heavy imbalance between positive and negative instances. We also design a rule-
based model to further help select the data records. We rank each data record by an overall score based
on the two rankers and rule-based system. Finally, we feed the selected and ordered records, which not
only the noise and the input size is reduced but also the content is planned, to the generator to obtain
the summaries. In this way memory usage could be largely reduced, thus the training process could be
accelerated.

We evaluate our method on the ROTOWIRE dataset (Wiseman et al., 2017). The results show how
our system improves the model’s ability of selecting appropriate context and ordering them. While we
achieve comparable BLEU score, the efficiency of the model is greatly improved.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

2 Related Work

Data-to-text generation has been an important topic of natural language generation for decades. Early
approaches mainly use templates and rules to perform content selection and surface realization (Ku-
kich, 1983; Holmes-Higgin, 1994; Reiter and Dale, 1997). These models have good interpretability and
controllability, but the generated content often have problems in terms of diversity and consistency.

Recently, neural network techniques have greatly improved the results of generating short descriptive
text from data. The E2E dataset (Lebret et al., 2016) stated the task of generating natural language
descriptive text of the restaurants from structured information of the restaurants. The Wikibio dataset
(Novikova et al., 2017) gives the infobox of wikipedia as the input data and the first sentence of the
corresponding biography as output text. Various approaches have achieved good results on these two
datasets which considered content selection and planning. Sha et al. (Sha et al., 2017) proposed a method
that models the order of information via link-based attention between different types of data records.
Perez-Beltrachini and Lapata (Perez-Beltrachini and Lapata, 2018) introduce a content selection method
based on multi-instance learning.

Generating sport news summaries on the other hand,is more challenging because not only the output
text is longer and more complex, but also the input data records are numerous and diversed. Wiseman
et al. (Wiseman et al., 2017) proposed the ROTOWIRE data set and gave baselines model based on
end-to-end neural networks with attention and copy mechanism, these models often overlook key facts,
repeatedly output the same information and make up irrelevant content. Puduppully et al. (Puduppully et
al., 2018) designed a system that uses gate mechanism and pointer network to select and plan the content.
They only used the IE system to guide content planning, while we let the IE system guide both content
selecting and planning. Meanwhile our system is lighter and has higher efficiency since we only feed the
neural network with a small subset of the large set of data records.

3 Model

Figure 2: A brief flow graph of our model.

Our model consists of three modules: information extraction, data refining (record selection and plan-
ning) and text generation. Figure 2 is a brief flow chart showing the pipeline of our model, which
illustrates the data flow and how the models are trained.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

3.1 Information Extraction
This module aims to provide supervision for data refining and text generation, and is only used during
training. We build a relation extractor similar to Wiseman et al. (2017), who used a relation extractor for
automatic evaluation. We do not have human-annotated data for this specific domain, but this relation
extractor can be trained by distance learning(Mintz et al., 2009), which uses exact match between can-
didate entity-value pairs and data records to build pseudo training data. For example, from a sentence
A scored 4 points and B scored 8 points, which has two entities {A, B} and two values {4, 8}, we can
extract 4 candidate entity-value pairs {(A, 4), (A, 8), (B, 4), (B, 8)}. Then we compare them with the
original data records and check whether these candidate pairs match with data records. In this example
we can find (A, 4, PTS) and (B, 8, PTS) in the original data records, so we label the candidate pairs as
{(A, 4, PTS), (A, 8, norel), (B, 4, norel), (B, 8, PTS)}, where norel is the label that stands for no relation-
ship and form the pseudo data. To be noticed, there might be multiple data records that match with the
candidate pair, so the training data here is multi-labeled. The reason why we use an IE system instead of
using the pseudo data straight away is because with the help of context information, the IE system can
make better decisions and generalize better than the exact-match method.

To train the IE system, we cast the relation extraction task into a classification problem by modeling
whether an entity-value pair in the same sentence has relation or not (Zhang, 2004; dos Santos et al.,
2015). We use neural network to train the relation extractor and ensemble various models to further
improve the performance. Formally, given an input sentence x = {xt}nt=1 which contains an entity-value
candidate pair (r.E, r.M), we first embed each word into a vector eWt . The embedding is then concatenated
with two position embedding vectors eEt and eVt , which stands for the distance between the word and
the entity and the value. Then the final word embeddings et = concat

{
eWt , e

E
t , e

V
t

}
are fed into a

bi-directional long short-term memory network (BiLSTM) or a convolutional neural network (CNN) to
model the sequential information.

ht = BiLSTM(et, ht−1, ht+1)
hLSTM = hn

(1)

hCNN = CNN(concat {et}nt=1) (2)

After encoding the sentence, we use multilayer perceptron network (MLP) with a rectified linear
unit(ReLU) as active function to make classification decisions and maintain the model’s prediction of
the candidate pair r.T . To be minded, the output r.T is a vector where each position indicates whether
the candidate pair is aligned with the data record at this position. Since there could be multiple labels,
the output vectors are not distributions.

r.T = ReLU(Wh+ b) (3)

Because the training data is multi-labeled, we use negative marginal log likelihood as the loss function,
namely each position is optimized toward 1 if positive and 0 if negative. We then map the positive
candidate pairs back to the data records as silver training labels for the next stage. If a positive candidate
pair (entity, value, r.T), which is extracted from the xth sentence, is also in the data records, we label
this data record as Appeared in the xth sentence of the summary.

3.2 Data Refining
In this module, we use two ranking models to refine the data records. These two rankers have different
targets to optimize and separately perform content selection and ordering.

For content selection, we use both ListNet(Cao et al., 2007) and rule-based methods to select data
records. The training data of this stage is seriously imbalanced: more than 95% of the input data records
do not appear in the summaries and are labeled as negative. This makes it difficult for classification
models to achieve good results. So here we use the L2R method to perform content selection. Instead
of a point-wise loss function, which looks at a single example at a time, pair-wise and list-wise loss
functions try to come up with the optimal ordering of a pair or a list of examples. In this stage we use

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Feature Type Explanation
Record Type One hot The one-hot representation of record type (i.e. PTS)
Is Team Value Boolean of team or player
Home Visit Value Boolean of home or visit team
Win Lose Value Boolean of win or loss
Win ratio Value The win ratio of previous matches
Lose ratio Value The lose ratio of previous matches
Team Performance Values All values of the team (i.e. PTS, PTS QTR1, FG PCT)
Player Performance Values All values of the player. Zeros if it is team record
Start Position One hot The start position of player. Zeros if it is team record
Pair Value Value The value of f, if not a number then 0
N/A Value Whether the value is N/A
Team Rank Values Whether the team value is larger that the other
Player Rank Values The rank of each record type of this player

Table 2: The details of features used for the ranking unit.

Type Rule Threshold
TEAM-PTS all \
TEAM-WINS all \
TEAM-LOSSES all \
AST bar 9
PTS bar 11
REB bar 9
TEAM-FG3 PCT bar 45
TEAM-FG PCT bar 10

Table 3: The details of rules for the ranking unit. ’all’ stands for choosing all records of this type of
data. ’bar’ stands for choosing the data records which value is larger than the threshold.

ListNet, which optimizes a list-wise loss function, so the data imbalance problem can be relieved. Given
a list of data records r = {rk}nk=1 = {r.Ek, r.Mk, r.Tk}nk=1, we design hand-craft features and form
a feature vector fk for each data record as the input of the ranking model. We give the details of the
features in the Table 2. Then the ranking model assigns a score sSk to each data record.

sSk = ListNet(fk) (4)

During inference stafe, we use a hyper-parameter threshold α tuned on the validation set to choose
data records.

The rules are designed based on common sense and statistics of basketball news. We observe that
several types of data records are chosen mainly according to whether the data record’s value is larger
than a specific threshold. Some other type of data records always appear in pairs, such as FTA and FTM.
We give a table of details of the rules in the Table 3.

For content ordering, we use a pair-wise L2R method RankBoost(Freund et al., 2003) to reorder the
selected data records. While training, we use the subset of data records r = {rk|rk.t 6= negative} to
train this model. When we perform inference, the output of the content selecting unit is used as the input.
We similarly embed rk into a feature vector fk and then use RankBoost to assign a score sOk to each rk.

sOk = RankBoost(fk) (5)

We use sOk to reorder {r} into {rO} and feed this ordered list of data records to the text generation
module.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

3.3 Text Generation

In the text generation module, we use a sequence-to-sequence encoder-decoder system to generate the
summaries (Sutskever et al., 2014). Given a list of data records rO= [rOk]

n
k=1. We map these data records

to a feature vector ek by embedding r.E, r.T and r.M and concatenate the three embedding vectors and
then use one layer of MLP to merge them into the final embedding vector.

The embeddings are then fed into the encoder, which is a BiLSTM to sequentially model the input and
maintain the encoder output vectors hidden states ht.

ht = [hft ;h
b
t] = BiLSTM(et, h

f
t−1, h

b
t+1) (6)

The decoder is built based on the Gated Recurrent Network (GRU). At each time step the decoder
receives an input edt and calculates the output vector sdt . Meanwhile it updates its own hidden state hdt .

sdt , h
d
t = GRU(edt , h

d
t−1) (7)

Here we implement the attention mechanism, conditional copy mechanism and coverage mechanism
to further improve the model’s performance.

Attention and Coverage The attention at each step is calculated similar to See et al.(See et al., 2017),
which is called perception attention. To calculate the attention weight between the hidden state of the
decoder hdt and one output of the encoder hi, we map the two vectors to fix size vectors seperately by two
MLPsWa and Ua with trainable bias ba as hai . Then we use a trainable vector va and dot multiply it with
tanh(hai) as the attention score sti . At last we calculate the softmax over attention scores {sti}ni=0 as
the attention weights {ati}ni=0. We finally dot-multiply the attention weights {ati}ni=0 with the encoder
outputs {hi}ni=0 and sum them as the final attention vector htattn .

hai =Wah
d
t + Uahi + ba (8)

sti = vTa tanh(hai) (9)

ati = softmax(sti) =
exp(sti)∑
j exp(stj)

(10)

htattn =
n∑

i=0

atihi (11)

We also found that model often tends to repeatedly write about the same information, so we introduce
coverage mechanism here to relief this problem. The key idea of coverage is to reduce the probability of
paying attention to the information that is already generated.

If the sum of the previous attention weights is very high, there is a high probability that the information
of this position is already generated. So in coverage model, we maintain a coverage score cti for each
encoder position at each decoder timestep, which is the sum of the attention weight of the previous
timesteps {at′i}

t−1
t′=0.

cti =

t−1∑
t′=0

at′i (12)

We then modify the previous attention score with this coverage score. We assign a trainable weight
vector wc to cti and sum it with hai to maintain the adapted attention score.

sti = vTa tanh(hai + wccti) (13)

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Conditional Copy The copy mechanism has shown great effectiveness as an augmentation of encoder-
decoder models recently. At each step the model uses an additional variable zt to choose to copy or
generate a word. The model either copies a word from the input sequence or generates a word from the
vocabulary at step t.

Although both rk.E and rk.M may appear in the summaries, we only consider the probability of
copying rk.M . Instead of directly marginalizing out the latent-variable zt, when we train the model we
assume that any word yt that appears both in the source data records and the summary is copied, so
that we can jointly optimize the negative log-likelihood of yt and zt. To be noticed, there might be not
only one rk.M that matches with yt. Because our input data shares the same sequential order with the
information mentioned in the summaries, we map the values from the start of the data records and skip
the ones that are already mapped to align the records and copied values.

y =
pcopy(yt|zt; y1:t−1;h1:n)p(zt|y1:t−1;h1:n);

zt = 1
pgenerate(yt|zt; y1:t−1;h1:n)p(zt|y1:t−1;h1:n);

zt = 0

We use the attention weights explained previously as the distribution pcopy(yt|zt; y1:t−1;h1:n). We
concatenate the decoder input edt , the decoder output sdt and the attention vector htattn and feed them into
one MLP layer with sigmoid to model p(zt|y1:t−1;h1:n).

4 Experiments and Results

4.1 Dataset
Here we use the ROTOWIRE dataset(Wiseman et al., 2017), which contains 3378 data-text pair in the
training data. In addition to BLEU, this data set provides three automatic evaluation metrics, which are
content selection (CS), relation generation (RG), and content ordering (CO). The first primarily targets
”what to say” while the latter two metrics target ”how to say”. These three metrics are calculated based
on an information extraction system that serves to align entity-mention pairs in the text with data records.
We use the code released by Wiseman et al. (2017) to maintain the evaluation scores of our model.

4.2 Implementation Details
We tune all the hyper-parameters according to the model performance on the validation set. The rules of
the ranking unit are chosen according to their performance on the training set. We use grid search to tune
parameters of the rankers. We use the implementation of RankLib to train the rankers. The embedding
size, hidden size of both the encoder and decoder are all 1200. The layer number of the encoder and
decoder are both two. The batch size is 12. We set dropout of 0.1 and use Adagrad to optimize the text
generator with a learning rate of 0.01.

For the ranking units and text generator, we use the data records that the IE system extracts directly to
reduce noise while training. During validation and test, we use the ranking units to extract the input of
the generator.

We re-tokenize the original training data by separating numbers connected by ’-’ and ’:’. We also
delete one Latin summary from the training data.

4.3 Performance
The results of our model and other baseline systems are shown in Table 4.

From the results we can see the effectiveness of our model, since it has significantly improved all the
content evaluation metrics. Thus we can say refining the input data can help the model to be faithful to
the input (RG), select good content (CS) and order them considering overall coherence (CO). We can see
the BLEU score of our model is slightly lower than the baseline models. We think this is acceptable in
trade of the great improvement of other evaluation scores.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

Model RG CS CO BLEU
P # P R DLD

Validation Set
Template(Wiseman et al., 2017) 99.35 49.7 18.28 65.52 12.2 6.87
CC(Wiseman et al., 2017) 71.07 12.61 21.90 27.27 8.70 14.46
JC + TVD + Rec(Wiseman et al., 2017) 57.51 11.41 18.28 25.27 8.05 12.04
CC + R 76.86 16.43 31.20 38.94 14.98 13.27

Test Set
Template(Wiseman et al., 2017) 99.30 49.61 18.50 64.70 8.04 6.78
CC (Wiseman et al., 2017) 71.82 12.61 21.90 27.16 8.68 14.49
JC + TVD +Rec (Wiseman et al., 2017) 60.27 9.18 23.11 23.69 8.48 12.96
CC + R 75.12 16.90 32.79 39.93 15.62 13.46

Table 4: The results of text generation on validation set and test set. CC stands for conditional copy,
JC stands for joint copy, TVD stands for the total variation distance loss, Rec stands for reconstruction
losses, R stands for ranking.

5 Analysis

5.1 Content Selection

The results of our content selection and ordering models on the valid set are shown in Table 5. The
results can prove our models’ ability of refining data. We can see, because of imbalanced training data,
ranking models with a threshold can significantly out perform classification models.

Model P R F1
ListNet 18.08 26.93 21.63
SVM 10.76 21.27 14.29
Random Forest 9.63 55.36 16.41
ListNet + Rule 59.02 59.98 59.50

Table 5: The results of content selection and data ordering on the valid set.

select emb hid bs GPU time
1 False 600 600 2 9275 214
2 True 600 600 2 2163 45
3 True 600 600 16 10375 8
4 True 1200 1200 12 10525 16

Table 6: The results of original input and refined order input. ’emb’ and ’hid’ stands for embedding and
hidden dimensions. ’bs’ stands for batch size. ’GPU’ stands for the maximum memory used on GPU.
’time’ stands for the time used for every epoch, the unit is minute.

5.2 Model Efficiency

Our model also significantly improves the efficiency of the model. We show the comparison of our
model and CC(Wiseman et al., 2017) model in Table 6 and Figure 3. Our model significantly reaches
convergence faster and uses less memory and time to train. The parameter in the embedding and encoder
layer is greatly reduced due to the refining of the input. For case #1 and #2, we can see the GPU memory
usage and the time for each epoch is greatly reduced, which leads to faster convergence of the model. In
case #3 and #4, we show that by refining the input, we can allow larger batch size, embedding size and

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

0

1

2

3

4

5

6

7

8

9

0 60 120 180 240 300 360 420 480 540 600 660

lo
ss

time/min

1

2

3

4

Figure 3: Statistics of how the loss changes over time. The number labels of the poly-lines match with
the order in Table 4.

hidden state size for the model to further boost the performance. While the architecture of the generator
of our model and CC is similar, we show refining the input can greatly improve the model’s efficiency.

5.3 Case Study

Here we show one example of the pipeline on the validation set in Figure 4. We show the triples extracted
by the IE system, triples extracted by the refining unit the gold text and the final generated text.

From this example we can see, the IE system has a strong ability of extracting relation pairs from the
gold text. The IE system missed two information pairs which are (Pacers,35,TEAM-TEAM-PTS QTR3)
and (Knicks,12,TEAM-TEAM-PTS QTR3), but succeeded in all other pairs, ending with an accuracy of
87.5% in this example.

The refining system shows a high precision comparing to the gold reference, covering 12 out of 16
triples.

The generated text is very faithful to the refined input at the first 5 sentences, but began making up
false information when it tries to generate facts not given by the refined input. 2 - 3 3Pt , 3 - 3 FT are fake
information about Jose Calderon where the corresponding information is not selected by the refining
system. The following text contains more fake information. This shows the limitations in generating
long text for seq2seq models and some shortages of pre-selected refined text. For further improvement,
we should improve the ability of the model to generate long text, and also consider dynamically giving
information that the model needs instead of feeding fixed triples.

6 Conclusion

In this paper we propose a data-to-text generating model which can learn data selecting and ordering
from an IE system. Different from previous methods, our model learns what to say and how to say from
the supervision of an IE system. To achieve our goal, we propose to use a ranking unit to learn selecting
and ordering content from the IE system and refine the input of the text generator. Experiments on the
ROTOWIRE dataset verifies the effectiveness of our proposed method.

Acknowledgement

We thank the anonymous reviewers for their helpful comments on this paper. This work was partially
supported by National Key Research and Development Project (2019YFB1704002) and National Natural
Science Foundation of China (61876009 and 61572049). The corresponding author of this paper is Sujian
Li.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

IE (New York Knicks, 82, TEAM-PTS), (New York Knicks, 9, TEAM-WINS), (Indiana Pacers, 31,
TEAM-LOSSES), (Indiana Pacers, 17, TEAM-WINS), (Indiana Pacers, 103, TEAM-PTS), (New York
Knicks, 38, TEAM-LOSSES), (Roy Hibbert, 18, PLAYER-PTS), (Roy Hibbert, 10, PLAYER-REB),
(Carmelo Anthony, 7, PLAYER-FGM), (Carmelo Anthony, 16, PLAYER-FGA), (Carmelo Anthony,
18, PLAYER-PTS), (Rodney Stuckey, 22, PLAYER-PTS), (Rodney Stuckey, 13, PLAYER-FGA),
(Rodney Stuckey, 8, PLAYER-FG)
Refine (Knicks, 38, TEAM-LOSSES), (Pacers, 31, TEAM-LOSSES), (Knicks, 9, TEAM-WINS), (Pac-
ers, 17, TEAM-WINS), (Knicks, 42, TEAM-FG PCT), (Pacers, 53, TEAM-FG PCT), (Pacers, 33,
TEAM-FG3 PCT), (Knicks, 31, TEAM-FG3 PCT), (Knicks, 82, TEAM-PTS), (Pacers, 103, TEAM-
PTS), (Carmelo Anthony, 18, PLAYER-PTS), (Carmelo Anthony, 16, PLAYER-FGA), (Carmelo An-
thony, 7, PLAYER-FGM), (Carmelo Anthony, 2, PLAYER-FG3M), (Carmelo Anthony, 4, PLAYER-
FG3A), (Ian Mahinmi, 10, PLAYER-REB), (Carmelo Anthony, 25, PLAYER-MIN), (Lou Amundson,
17, PLAYER-PTS), (Rodney Stuckey, 22, PLAYER-PTS), (Jose Calderon, 9, PLAYER-PTS), (Jose
Calderon, 28, PLAYER-MIN), (Jose Calderon, 4, PLAYER-FGM), (Jose Calderon, 7, PLAYER-FGA),
(Carmelo Anthony, 2, PLAYER-FTM), (Carmelo Anthony, 2, PLAYER-FTA), (Carmelo Anthony, 1,
PLAYER-REB), (Carmelo Anthony, 1, PLAYER-AST), (Roy Hibbert, 10, PLAYER-REB), (Roy Hib-
bert, 18, PLAYER-PT)
Gold The Indiana Pacers (17 - 31) throttled the New York Knicks (9 - 38) 103 - 82 Thursday at the
Bankers Life Fieldhouse . The Knicks held a five - point deficit at halftime before having a complete
meltdown in the third quarter . The Pacers outscored the Knicks 33 - 12 in the third to all but ice the
game . Roy Hibbert scored 10 of his 18 points in the third and added 10 rebounds in the contest to notch
his 12th double - double on the season . New York earned an impressive 100 - 92 win over Oklahoma
City on Wednesday but was unable to carry that momentum into Thursday ’s contest against Indiana .
The Knicks were unable to get much of anything going in the second half . Carmelo Anthony had n’t
scored less than 20 points in any game this month , but was held to 18 points on 7 - of - 16 shooting
against the Pacers . The Knicks have two days off before hosting the Lakers on Sunday . Indiana
was able to rebound nicely after its 104 - 91 loss to Toronto on Tuesday . George Hill and C.J Miles
were both able to play , but were on minutes restrictions and only saw 12 and 13 minutes respectively .
Rodney Stuckey led the team in scoring , putting up 22 points on 8 - of - 13 shooting . The Pacers will
look to secure their second straight win Saturday when they host the Kings .
Generated The Pacers (17 - 31) held on for a 103 - 82 win over the Knicks (9 - 38) on Friday .
Carmelo Anthony led the way with a game - high 18 points on 7 - of - 16 shooting , to go along with
one rebound , one assist and one block in 25 minutes . Jose Calderon was the only other starter to score
in double figures , scoring 10 points on 4 - of - 7 shooting in 28 minutes off the bench . The Knicks shot
53 percent from the field and 33 percent from three - point range . The Knicks were led by Carmelo
Anthony , who finished with 18 points (7 - 16 FG , 2 - 4 3Pt , 2 - 2 FT) , one rebound , one assist and
one block in 25 minutes . Jose Calderon added 10 points (4 - 7 FG , 2 - 3 3Pt , 3 - 3 FT) , six assists
, one rebound and one steal in 33 minutes . The Knicks shot 53 percent from the field and 33 percent
from three - point range . Carmelo Anthony was the high - point man for the Knicks , with 18 points (
7 - 16 FG , 2 - 4 3Pt , 2 - 2 FT) , to go with one rebound , one assist , one steal and one block . Jose
Calderon chipped in 10 points (4 - 7 FG , 2 - 3 3Pt , 3 - 3 FT) , six assists , one rebound and one steal
in 33 minutes . The Knicks shot 53 percent from the field and 31 percent from three - point range . The
Knicks have now lost four of their last five games , as they continue to battle for the eighth seed in the
Eastern Conference . They will look to get back on track as they play host to the Bucks on Sunday .
The Pacers have now lost four of their last six games , as they continue to battle for a playoff spot in the
Eastern Conference . They will look to bounce back as they play host to the Nets on Sunday .

Figure 4: One example of our system. IE stands for triples extracted by the IE system, Refine stands for
triples selected by the refining system, Gold stands for the reference text and Generated stands for the
generated result.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

Computational Linguistics

References
Antoine Bosselut, Asli Celikyilmaz, Xiaodong He, Jianfeng Gao, Po-Sen Huang, and Yejin Choi. 2018.

Discourse-aware neural rewards for coherent text generation. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 173–184.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to rank: from pairwise approach
to listwise approach. In Proceedings of the 24th international conference on Machine learning, pages 129–136.
ACM.

Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2015. Classifying relations by ranking with convolutional neural
networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), volume 1, pages
626–634.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. 2003. An efficient boosting algorithm for combining
preferences. Journal of machine learning research, 4(Nov):933–969.

Paul Holmes-Higgin. 1994. Text generation—using discourse strategies and focus constraints to generate natural
language text by kathleen r. mckeown, cambridge university press, 1992, pp 246,£ 13.95, isbn 0-521-43802-0.
The Knowledge Engineering Review, 9(4):421–422.

Karen Kukich. 1983. Design of a knowledge-based report generator. In 21st Annual Meeting of the Association
for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 1203–1213.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. 2009. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP, pages 1003–1011. Association
for Computational Linguistics.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. 2017. The E2E dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, Saarbrücken, Germany. arXiv:1706.09254.

Laura Perez-Beltrachini and Mirella Lapata. 2018. Bootstrapping generators from noisy data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), volume 1, pages 1516–1527.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2018. Data-to-text generation with content selection and plan-
ning. arXiv preprint arXiv:1809.00582.

Ehud Reiter and Robert Dale. 1997. Building applied natural language generation systems. Natural Language
Engineering, 3(1):57–87.

Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), volume 1, pages 1073–1083.

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, and Zhifang Sui. 2017. Order-planning
neural text generation from structured data. arXiv preprint arXiv:1709.00155.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112.

Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. 2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017,
Copenhagen, Denmark, September 9-11, 2017, pages 2253–2263.

Zhu Zhang. 2004. Weakly-supervised relation classification for information extraction. In Proceedings of the
thirteenth ACM international conference on Information and knowledge management, pages 581–588. ACM.

Proceedings of the 19th China National Conference on Computational Linguistics, pages 882-892, Hainan, China, October 31 - Novermber 1, 2020.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

