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Abstract

Recent advances of multilingual word representations weaken the input divergences across
languages, making cross-lingual transfer similar to the monolingual cross-domain and semi-
supervised settings. Thus self-training, which is effective for these settings, could be possibly
beneficial to cross-lingual as well. This paper presents the first comprehensive study for self-
training in cross-lingual dependency parsing. Three instance selection strategies are investigated,
where two of which are based on the baseline dependency parsing model, and the third one
adopts an auxiliary cross-lingual POS tagging model as evidence. We conduct experiments on
the universal dependencies for eleven languages. Results show that self-training can boost the
dependency parsing performances on the target languages. In addition, the POS tagger assistant
instance selection can achieve further improvements consistently. Detailed analysis is conducted
to examine the potentiality of self-training in-depth.

1 Introduction

Cross-lingual dependency parsing has received increasing attention in recent years (Hwa et al., 2005;
McDonald et al., 2011; Tiedemann et al., 2014; Guo et al., 2016a; Agić et al., 2016; Schlichtkrull and
Søgaard, 2017; Rasooli and Collins, 2017; Rasooli and Collins, 2019; Zhang et al., 2019), which aims to
parse target low-resource language with the supervision of resource-rich language. In this paper, we focus
on the unsupervised setting (Ma and Xia, 2014; Guo et al., 2015; Rasooli and Collins, 2015; Tiedemann
and Agić, 2016; Agić et al., 2016; Schlichtkrull and Søgaard, 2017; Ahmad et al., 2019), where no
targeted dependency treebank is given.

Recent advances of multilingual word representations (Smith et al., 2017; Chen and Cardie, 2018;
Mulcaire et al., 2019; Pires et al., 2019; Lample and Conneau, 2019; Wang et al., 2019; Wu and Dredze,
2019) has substantially promoted cross-lingual dependency parsing, especially serving as the basic input
features for model transfer methods (Guo et al., 2016a; Schuster et al., 2019; Wang et al., 2019). They
reduce the input divergences between languages significantly. As a result, the cross-lingual transfer
learning setting can be considered highly similar to the monolingual semi-supervised and cross-domain
settings. In light of this, the self-training strategy, which is widely adopted for cross-domain parsing
(Reichart and Rappoport, 2007; Rush et al., 2012; Yu et al., 2015; Saito et al., 2017; More et al., 2019),
can be potentially applicable for cross-lingual dependency parsing as well. However, relatively little work
has demonstrated the effects of this potential method.

Instance selection for the next-round training is the key to self-training (Mihalcea, 2004; McClosky et
al., 2006a; McClosky et al., 2006b; He and Zhou, 2011; Artetxe et al., 2018), which requires a certain
criterion to rank the automatic outputs from the baseline model (Goldwasser et al., 2011; Yu et al., 2015;
Zou et al., 2019). Such criteria are typically derived from the baseline model directly, for example,
the prediction probability (Zou et al., 2018), and the delta probability between the final output and the
second-best candidate output (Yu et al., 2015). Here we hypothesize that we can improve the performance
of self-training by an auxiliary task which is highly corrective with the target task. A natural auxiliary
task for cross-lingual dependency parsing is universal Part-of-speech (POS) tagging.
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Figure 1: The overall architecture of self-train, where cross-lingual POS tagging is used to assist the
instance selection in this work.

POS tags have served as one basic feature for dependency parsing (Zhang and Nivre, 2011; Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2016), and universal POS tags have been one important feature
source for cross-lingual dependency parsing (McDonald et al., 2011; Petrov et al., 2012). The construction
of a POS tagging corpus for a target language has a much lower cost than that of a dependency treebank,
leading to the majority work of cross-lingual dependency parsing assuming gold-standard POS tags as
inputs (Guo et al., 2016a; Rasooli and Collins, 2015; Tiedemann and Agić, 2016; Rasooli and Collins,
2017). We assume that a POS tag training corpus for the target language is available.

Based on the above settings, we investigate the capacity of self-training for cross-lingual dependency
parsing empirically. Taking the BiAffine parser (Dozat and Manning, 2016) as the major architecture and
enriching the model with multilingual BERT word representations (Devlin et al., 2019), we evaluate two
widely-adopted instance selection strategies of self-training, and further propose a POS tagging guided
criterion, which is illustrated in Figure 1. In particular, a supervised cross-lingual POS tagging model is
trained to guide the instance selection in self-training, which uses a language-aware parameter generation
network (PGN) (Platanios et al., 2018; Jia et al., 2019) for language switching. Our goal is to choose the
target language sentences for which the POS tag outputs change relatively little when they are intentionally
marked as source language sentences.

We conduct experiments on the Universal Dependencies (McDonald et al., 2013; Nivre et al., 2016)
to study the effectiveness of self-training. English is selected as the source language, and eleven target
languages belonging to four different families are investigated. Results show that self-training is an
effective way for cross-lingual dependency parsing, boosting the dependency parsing performances of
all selected target languages. In addition, POS-guided instance selection achieves further improvements.
Finally, we conduct detailed analysis to understand the effectiveness of our self-training methods on four
representative languages, one for each language family. All codes and datasets will be released pub-
licly available on https://github.com/zhangmeishan/selftraining for research purpose
under Apache License 2.0.

2 Related Work

Existing work on cross-lingual dependency parsing can be classified into two categories, namely model
transferring and annotation projection, respectively. The first aims to train a dependency parsing model
on the source-language treebank (McDonald et al., 2011; Guo et al., 2016a; Guo et al., 2016b), and then
use it for target languages directly. Language independent features are exploited in order to minimize the
gapping between the source and target languages, including multilingual word clusters (Täckström et al.,
2012), word embeddings (Guo et al., 2015; Duong et al., 2015b; Duong et al., 2015a; Zhang and Barzilay,
2015; Guo et al., 2016b; Ammar et al., 2016; Wick et al., 2016; de Lhoneux et al., 2018), universal POS
tags (McDonald et al., 2011; McDonald et al., 2013) and multilingual contextualized word representations
(Wang et al., 2019; Wu and Dredze, 2019). In this work, we build our baselines with multilingual BERT,
which has demonstrated state-of-the-art effort for cross-lingual model transferring (Wang et al., 2019).

Annotation projection aims to construct an automatic target-language dependency treebank by projecting
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source language dependencies into target language sentences (Hwa et al., 2005; Ganchev et al., 2009).
It relies on a parallel corpus, where source dependencies can be obtained by a source parser (Ma and
Xia, 2014; Rasooli and Collins, 2015; Xiao and Guo, 2015; Agić et al., 2016; Schlichtkrull and Søgaard,
2017) or manually annotated (Tiedemann et al., 2014; Tiedemann, 2015; Tiedemann and Agić, 2016).
Word-level alignment between sentence pairs has been used to project source dependencies into the
target sentences. Our self-training strategy is similar in constructing automatic training datasets for target
languages, while the key idea is significantly different.

Self-training has been shown effective for a number of NLP tasks (Mihalcea, 2004; McClosky et al.,
2006a; Sagae, 2010; Goldwasser et al., 2011; He and Zhou, 2011; Artetxe et al., 2018). For dependency
parsing, Rush et al. (2012) show that it fails to improve the performance under a supervised setting. Several
studies have demonstrated its effectiveness on neural dependency parsing under the fully supervised
multilingual setting (Rybak and Wróblewska, 2018). Lightly supervised learning and cross-domain
adaption are more successful settings for self-training (McClosky et al., 2006b; Reichart and Rappoport,
2007; Rush et al., 2012; Yu et al., 2015; More et al., 2019). Our work applies self-training in the
unsupervised cross-lingual setting. There is only one work of a similar setting. Rasooli and Collins (2017)
add a number of auto-parsed outputs to enlarge the training dataset as an auxiliary technique. Their auto
labeling is limited to the small-scale raw corpora with gold-standard POS tags, obtaining much smaller
improvements than our work. To our knowledge, we are the first work to study self-training systematically.

3 Models

In this section, we describe the dependency parsing and POS tagging models, and the key details which
would be used in the self-training.

3.1 Dependency Parsing
We use the BiAffine dependency parsing model (Dozat and Manning, 2016) as the baseline parser, adapting
it for cross-lingual parsing with multilingual BERT inputs (Devlin et al., 2019).
Input. An input sentence w1 · · ·wn is fed directly into a pretrained multilingual BERT module. BERT
would split each word into pieces. We adopt averaged pooling to obtain word-level representations from the
piece-level outputs. The top-k layer outputs of the BERT are used, which are combined by a parameterized
scalar vector into a single representation layer.1 Finally, we obtain word-level representations x1 · · ·xn

by this process.
Encoder. The BiAffine dependency parsing simply adopts a three-layer BiLSTM as encoder, which can
be formalized as:

hl
1 · · ·hl

n = BiLSTM(hl−1
1 · · ·hl−1

n ), (1)

where l = {1, 2, 3}, h0
1 · · ·h0

n = x1 · · ·xn, and h3
1 · · ·h3

n is our desired outputs.
Decoder. The BiAffine operation is used to calculate head and dependency label scores for each sentential
word. Take head prediction as an example. First, two MLP layers are used to obtain the features for a
word as head (hhead

1 · · ·hhead
n ) and child (hchild

1 · · ·hchild
n ), respectively. Then for each word wi, we find its

head word by calculating:
s(wx

i wj) = BiAffine(hchild
i ,hhead

j ), (2)

where j ∈ [1, n]/{i}, and the highest-scored j is selected as the head for word wi. For dependency
relation prediction, we simply extend the scale s(wx

i wj) into a vector srel(wx
i wj), whose dim size equals

the relation size. After the head word j is specified, we obtain the dependency relation label by the
highest-scored index.
Dependency Probability. The probability for each dependency arc will be used as the confidence score
in self-training. For each sentential word wi, the probability of a given head j is calculated by:

p(wx
i wj) =

exp(s(wx
i wj))∑

k∈[1,n]/{i} exp(s(wx
i wk))

. (3)

1In this work, we set k = 6 and freeze BERT parameters according to the preliminary experiments.
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The probability is computed in terms of words since the BiAffine decoder classifies heads at the word
level. The conditional dependency relation probability p(ri|wi, hi) is computed similarly by softmax over
srel(wx

i wj). The reader is referred to as Dozat and Manning (2016) for more details.

3.2 POS Tagging
POS Tagging is exploited for two purposes related to self-training. On the one hand, we produce automatic
POS tag inputs for automatic dependency parsing, as it is impractical to assume a very large corpus with
gold-standard POS tags. On the other hand, we use the tagging model to rank auto-parsed dependency
trees for instance selection. Here, we introduce the POS tagging model in detail, which is adapted from a
typical BiLSTM POS tagger (Huang et al., 2015; Plank et al., 2016).
Input. Given a sentence w1 · · ·wn, we obtain x1 · · ·xn by going through a multilingual BERT module,
which is exactly the same as that of the dependency parsing model. The details can be found in the input
part of Section 3.1 directly.
Encoder. For the encoder, we exploit PGN-BiLSTM (Jia et al., 2019) instead of a standard BiLSTM,
taking the language ID as input to choose parameters for the BiLSTM module, which enables the model
better capture the language differences.

For convenience, we formalize the standard BiLSTM by:

h1 · · ·hn = BiLSTM(x1 · · ·xn,V ), (4)

where V denotes the flattened equivalent of all the BiLSTM parameters {W1 · · ·WK}. V can be
implemented by V = Vec(W1)⊕ · · · ⊕Vec(WK), where Vec(·) indicates vectorizing to reshape tensors
into vectors, and ⊕ denotes concatenation.

In PGN-BiLSTM, we produce V dynamically according to the input language ID. Formally, the
PGN-BiLSTM can be formalized as:

h1 · · ·hn = PGN-BiLSTM(x1 · · ·xn, elg)

= BiLSTM(x1 · · ·xn,Vlg),

= BiLSTM(x1 · · ·xn,Wpgnelg),

(5)

where elg is the embedding of the input language ID, and Wpgn is a meta model parameter of PGN-
BiLSTM. In this way, we obtain different encoder parameters when the input language ID changes.
Decoder. Finally, the decoder consists of a single MLP layer:

o1 · · ·on = MLP(h1 · · ·hn), (6)

which is used to score all POS candidates directly for each word. The highest-scored tag index of each oi

is the final POS predictions.2

POS Probability. We also need to calculate POS probabilities for self-training. This is conducted
straightforwardly by softmax since word-level prediction is used in our POS tagging model:

p(t|wi, lg) =
exp(oi,t)∑

exp(oi,∗)
, (7)

where t is the desired tag for word wi.

4 Self-Training

The self-training framework for cross-lingual dependency parsing is as follows. First, a cross-lingual
dependency parser (Section 3.1) trained on a source language corpus is used to parse the raw corpus of
a target language. In particular, POS tags of the raw corpus are produced by a supervised cross-lingual
POS tagger (Section 3.2). Next, we select a number of auto-parsed dependency trees from the outputs,
and use them as the extra corpus to enhance the dependency parser. Instance selection is a key factor to
the performance of self-training. We investigate two instance selection strategies based on the baseline
dependency parser, and further suggest another alternative by using the cross-lingual POS tagger.

2We do not exploit CRF as its final impact on self-training is marginal while introduces addition calculation cost.
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Figure 2: Illustration of the POS tagging guided instance selection, where the inner structures of the POS
tagging model is described in Section 3.2, tlg and slg denote the target and source languages, respectively.

4.1 Strategies based on Dependency Parsing
Prediction Probability. The prediction probability is a widely-adopted strategy for instance selection in
self-training (Yu et al., 2015; Zou et al., 2019), where auto-parsed dependency trees are ranked according
to their tree probabilities, and the top probability trees are used for next-round training. Given a sentence
w1 · · ·wn, assuming the output heads by our dependency parsing model are h1 · · ·hn, we calculate the
score of the output dependency tree by the following formula:

sprob =

n∏
i=1

p(wx
i whi

), (8)

where p(wx
i whi

) is defined by Formula 3, which can be regarded as the confidence value of the current
dependency arc.3 We refer to this strategy as prob for simplicity.

Delta Probability. The second strategy is to use the delta value of the probabilities between the output
head and the second-best head for each sentential word (Mejer and Crammer, 2012; Yu et al., 2015),
where auto-parsed trees with larger delta values are selected for self-training.4 For the sentence w1 · · ·wn,
where the output heads and the second-best heads are h1 · · ·hn and h′1 · · ·h′n, respectively, the selection
score is defined by:

sdelta =

n∏
i=1

(
p(wx

i whi
)− p(wx

i wh′i
)
)
. (9)

Note that there are cases where the final output head is not the highest-probability head because of the
tree constraints, which are excluded directly. We use delta to denote this method for short.

4.2 POS Tagging Enhanced Criterion
Ranking the output sentences from the cross-lingual dependency parsing model itself may be biased,
as it captures little knowledge on the differences between the source and target languages. Instead, the
cross-lingual POS tagging model can offer such information, since it learns a universal model from the
gold-standard training corpora of both the source and target languages. In addition, POS tagging is closely
related to dependency parsing because they are both syntax-oriented, but POS tagging is much more
light-weighted than dependency parsing, which makes our method more feasible in practice. Our goal is to
select a target sentence which behaves highly similar across languages. We use these sentences to bridge
the syntactic knowledge from the source into the target. Figure 2 illustrates the idea of the confidence
computation strategy in detail.

Formally, given a target language sentence w1 · · ·wn, we first go through POS tagging as introduced
in Section 3.2, feeding the target language ID into the PGN-BiLSTM encoder and computing the POS
tagging probabilities of the best predictions t1 · · · tn at the word level by Equation 7. Then we compute
another set of POS tagging probabilities by using the source language ID instead, feeding it into the
PGN-BiLSTM encoder and computing the POS tagging probabilities of t1 · · · tn. The process can be

3We do not use the relation probability for simplicity and meanwhile more importantly because it brings little influence.
4This is a simplified version of Yu et al. (2015).
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regarded as by intentionally treating the target language sentence as a source language sentence. Finally,
we obtain the confidence value for each sentence by:

Diffi = ‖p(ti|wi, tlg)−p(ti|wi, slg)‖,

spos =
n∏

i=1

(1− Diffi),
(10)

where the first equation indicates the language gaps, and the sentences with smaller gaps are chosen for
self-training. We use pos to denote it for short.

4.3 Confidence-Aware Training of Dependency Parsing
Although with relatively high quality, the selected auto-parsed trees can nevertheless include noise. In
order to address the influence of the noise, we introduce the confidence-aware training for the cross-lingual
dependency parsing. The idea is inspired by Li et al. (2014), who solve parse ambiguities for monolingual
self-training.

The standard training objective of the dependency parsing model mentioned in Section 3.1 is a cross-
entropy loss over the dependency trees in the training corpus. Given a sentence w1 · · ·wn and the
corresponding dependency structure (h1, r1) · · · (hn, rn), where h and r indicate the head and dependency
relation, respectively, the loss function is defined as follows:

L = −
∑

log p(hi, ri|wi)

n
, (11)

where p(hi, ri|wi) = p(wx
i whi

)p(ri|wi, hi).
We use the word-level confidence values to regularize the loss function, which is defined by:

Lconf = −
∑
p̃(wx

i whi
) log p(hi, ri|wi)

n
, (12)

where p̃(wx
i whi

) is the confidence, defined by the dependency probability obtained from the original
baseline dependency parsing model.

In particular, when the training corpus of the source and target languages is mixed to train a target
language parser, we adopt a hyper-parameter α as the word-level confidence to rescale all the source
language dependencies.

5 Experiments

5.1 Data and Settings
We conduct experiments on the Google Universal Dependency Treebanks (v2.2) (McDonald et al., 2013;
Nivre et al., 2016) to verify the effectiveness of our models.5 We adopt English as the source language. and
choose eleven target languages, including German (de), Dutch (nl) and Swedish (sv) of the IE.Germanic
family,6 Spanish (es), French (fr) and Portuguese (pt) of the IE.Romance family, Polish (pl), Slovak (sk)
and Slovenian (sl) of the IE.Romance family, and Estonian (et) and Finnish (fi) of the Uralic family. For
each language, we use the same treebank type as Wang et al. (2019).7

We collect 500,000 raw sentences for each target language, respectively. The raw sentences are all
selected from the Europarl v8 parallel corpus, which are download from the OPUS website directly. These
sentences are already tokenized by the OPUS. We exclude the sentences shorter than 5 words or longer
than 100 words, and then randomly sample 500,000 from the remaining.

For dependency parsing, we train models on the source English dataset and the auto-parsed dependency
trees produced by self-training. During evaluation, gold POS tags are used as inputs on the test datsets for

5http://hdl.handle.net/11234/1-2837
6English also belongs to this family.
7The data statistics are omitted due to the space limitation.
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Model.
IE.Germanic IE.Romance IE.Slavic Uralic

AVG
de nl sv es fr pt pl sk sl et fi

Source Only
baseline 75.31 75.22 81.35 78.35 81.51 78.84 79.80 72.08 72.22 69.30 72.15 76.01

Target Only
prob 76.44‡ 76.55‡ 82.40‡ 77.20↓ 81.86 78.45↓ 80.13 72.76 73.34‡ 71.05 72.59 76.62
delta 76.85‡ 76.29‡ 82.67‡ 77.31↓ 82.11 78.07↓ 80.22 72.60 73.48‡ 71.24‡ 72.51 76.67
pos 77.52‡ 76.74‡ 83.20‡ 78.54 82.35‡ 79.17 80.85‡ 73.32‡ 73.71‡ 71.64‡ 73.51‡ 77.32

∆(pos) +2.21 +1.52 +1.85 +0.19 +0.84 +0.33 +1.05 +1.24 +1.49 +2.34 +1.36 +1.31
Standard Self-Training (Source + Target)

prob 78.00‡ 76.68‡ 83.06‡ 78.41 82.37‡ 79.05 80.38 73.13‡ 74.04‡ 71.39‡ 73.13‡ 77.24
delta 77.85‡ 76.54‡ 83.23‡ 78.53 82.14 79.52‡ 80.17 73.37‡ 74.09‡ 71.50‡ 73.22‡ 77.29
pos 78.45‡ 77.22‡ 83.58‡ 79.42‡ 82.80‡ 80.01‡ 80.70‡ 73.74‡ 74.21‡ 72.04‡ 73.94‡ 77.83

∆(pos) +3.14 +2.00 +2.23 +1.07 +1.29 +1.17 +0.90 +1.66 +1.99 +2.74 +1.79 +1.82

Table 1: Final UAS results, where the ∆(·) rows show the improvements over the corresponding baseline
without self-training, the negative results are marked with ↓, the results marked with ‡ denote that the
p-value is less than 0.001 compared with the baseline by using the pairwise t-test.

all target languages, following the majority of the previous studies. We adopt the unlabeled attachment
score (UAS) as the major evaluation metric (excluding the punctuations).8

For POS tagging, we train models on the combined dataset of the source English training corpus and
the test corpus of each target language. Since gold-standard POS tags are already given as inputs for
dependency parsing, it is fair and reasonable to adopt this setting. The POS tagging model is also used to
tag raw corpus of the self-training for each language, which is a pre-requisite step for dependency parsing
since no POS tag exists in the collected large-scale raw corpus.

There are several hyper-parameters in the neural dependency parsing and POS tagging models. We set
them empirically according to previous work. For the input multilingual BERT, we exploit the BERT-Base
Multilingual Cased version, where the output dimension size is 768.9 The POS tag embedding size of
the dependency parsing model is 100. The language embedding size of the POS tagging model is 4. The
hidden sizes of various BiLSTMs for both parsing and tagging are all 400, and the hidden sizes of the two
MLP layers in the dependency parsing model are both 600.

For training, we exploit batch learning with a batch size of 200 and Adam with a learning ratio of 0.002
to optimize the model parameters. Dropout is adopted by a rate of 0.33 for all neural modules except
BERT. Since we assume only a test (no development) dataset for the target language, we stop the training
after 8,000 iterations. We train each model five times and report the averaged results.

5.2 Results

First, our baseline dependency parsing model achieves a UAS of 96.75 and an LAS of 95.14 on the
benchmark English Penn Treebank dataset (Stanford Dependencies v3.5.0) by using the base version of the
English BERT, and a UAS of 93.38 and an LAS of 91.34 on the UDT dataset,10 achieving state-of-the-art
dependency parsing performance (Kondratyuk and Straka, 2019). However, when multilingual BERT is
exploited, the performance shows a significant decrease, resulting in a UAS of 91.54 and an LAS of 89.30
on the UDT dataset. The observation indicates that monolingual training with language-specific BERT
might be better than multilingual BERT.

The final result on the test datasets with self-training is shown in Table 1. 50,000 target language
dependency trees are selected for training.11 First, we focus on the models trained on the selected

8LAS is not given for the target languages to save space.
9https://github.com/google-research/bert

10The scores change very little by fine tuning the BERT.
1150,000 is the closest setting to the best-performance models considering all settings and languages.
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Figure 3: Impact of the selected sentence number.

automatic target dependency trees only, which indicates the effectiveness of the transferred knowledge by
the target raw corpus. We list the performances in four groups according to the language family. In this
setting, the strategy prob and delta can bring better performances on the majority languages, except
on the language Spanish (es) and Portuguese (pt), which may be due to their differences with the English
language making the transferring difficult.

Our final POS guided strategy pos can give consistently improved performances on all languages
compared with the baseline, demonstrating that it is more effective than the prob and delta strategies.
Although the improvements on all languages are better, the pos strategy also shows large variances
among the eleven languages, which is similar to that of the prob and delta strategies. For the language
Spanish (es) and Portuguese (pt), the improvements by using pos are also much smaller than the other
languages. The observation indicates that the individual difference between the source and the target
languages is a key factor for the effectiveness of knowledge transferring.

Further, we examine the standard setting of the self-training, merging the selected auto-parsed target
dependency trees into the source English trees, and training target language dependency parsing models
on both the source and target corpora. We set α = 0.4 to reweigh the source English corpus. As shown in
Table 1, there are great improvements compared with those of using only the target trees in the majority of
cases. After the combination, all three instance selection strategies can obtain large gains. For the strategy
prob and delta, marginal improvements can be obtained for the language Spanish (es) and Portuguese
(pt) as well. Thus, self-training can bring improved performances for all the selected languages by using
any of the three instance selection strategies, demonstrating the effectiveness of self-training. Overall, we
obtain an averaged UAS improvement of 1.23+1.28+1.82

3 = 1.44 considering all selected eleven languages
and all instance selection strategies.

We new look at the performances of self-training with the pos instance selection strategy in detail,
which is used as our final model. As shown in Table 1, this model achieves the best performances
on all languages. The final model can obtain an averaged increase of 1.82 UAS points over all the
eleven languages, better than the other two strategies which are 1.23 and 1.28, respectively. In particular,
the languages of the IE.Germanic family benefit the most from self-training, leading to an averaged
improvement of 3.14+2.00+2.33

3 = 2.46 UAS points, which may be due to the same language family as the
source English language. Similarly, the large variations (i.e., the best is 3.14, while the worst is 0.90) of
the gains by our final model further demonstrate that the individual difference between the source and the
target languages has a strong influence on the effectiveness of self-training.

5.3 Analysis
We choose four languages German (de), Spanish (es), Polish (pl) and Estonian (et) for further analysis,
where one language is selected for each family.

Influence of the selected number. First, we examine the performance variations by the selected target
dependency tree numbers. Figure 3 shows the tendency, where the start position with zero target tree is
our baseline. When the number is surrounding 50,000, the UAS scores remain stable for all languages
and instance selection strategies. The pos strategy gives more sustainable growth compared with the
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prob and delta strategies, where the latter two show decreases when the number reaches 20,000. The
observation again indicates that pos is more effective for instance selection. In addition, we find that
prob and delta are highly similar. Averaged 90% of the selected sentences are identical by the two
strategies, while the percentages are lower than 30% when compared to the pos strategy, respectively.
Thus we exclude the delta strategy for the remaining analysis.

Impact of Confidence-Aware Training. Next, we test the effectiveness of confidence-Aware training.
Our preliminary experimental results show that their influences are similar across all the four languages.
Thus we average their performance to offer overall tendencies of the prob and pos instance selection
strategies. Figure 4 shows the comparison results. For reweighing via the target dependency confidences,
the prob strategy gains relatively little improvements compared with pos, which may be due to repeated
information exploited. For source dependency reweighing, the performances remain stable in [0.4, 0.7] for
both strategies, resulting in increased UAS values by approximatively 0.3 compared with α = 1.0. The
observation demonstrates that confidence-aware training can give better performances for self-training.

Performances by POS tags. Further, we analyze the profit distributions of self-training with respect to
different POS tags. The delta UAS values by different POS tags (only list seven popular tags) are shown
in Figure 5. We see that self-training can not consistently improve the performances over all POS tags,
especially for the languages which belong to a different family. By the fine-grained investigation, we can
see further that the syntax characteristic of the target language is critical for self-training. The results
further indicate that the individual difference between the source and the target languages is important,
as mentioned in Section 5.2, as it may determine which kinds of syntax can be accurately captured by
self-training. Given a target language, the highly-different syntax attributes might be difficult to learn, as
self-training transfers syntax knowledge in a purely unsupervised way. For the language German (de),
self-training can obtain better performance on all the seven popular POS tags, while for the other distant
language to the English, there exist no consistent findings in more details despite the fact that we can
obtain the overall improvements.

Performances by sentence lengths. Finally, we compare the performances in terms of sentence length.
Figure 6 shows the results, where the sentence length is categorized into six bins. Overall, self-training
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brings consistently better performances over all sentence lengths on the four languages, which demon-
strates the effectiveness further. We can see that the UAS decreases as a whole as the sentence length
grows, which is reasonable since long sentences are difficult to parse (e.g., the head selection range is
much larger). By examining the performance differences of the prob and pos in-depth, we find that
pos gives larger improvements on longer sentences, which is possibly due to that prob tends to select
shorter sentences (i.e., averaged 11.4 words compared with 15.2 words by pos when 50,000 sentences
are selected).

6 Conclusions

We investigated self-training for unsupervised cross-lingual dependency parsing. A baseline dependency
parser with multilingual BERT representations is trained and used to parse sentences of a target language
and a set of the resulting dependency trees are selected to help training a target language dependency
parser. We studied three different instance selection strategies, including two criteria by using the baseline
dependency parser, and one criterion guided by a multilingual POS tagger. Results showed that self-
training is effective in general for cross-lingual parsing. With the POS-assistant strategy, our final model
brings the largest improvements, demonstrating the effectiveness of the method.
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